
Alpha
these

s each
red to
The
ng-
outine

ied as

ction
BLE
on. It
it has

oper-
ring
h the

the
Chapter 3

Instruction Formats (I)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state. If an
system contains multiple Alpha processors, there are multiple per-processor sets of
registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream. A
instruction is decoded, the PC is advanced to the next sequential instruction. This is refer
as theupdated PC. Any instruction that uses the value of the PC will use the updated PC.
PC includes only bits <63:2> with bits <1:0> treated as RAZ/IGN. This quantity is a lo
word-aligned byte address. The PC is an implied operand on conditional branch and subr
jump instructions. The PC is not accessible as an integer register.

3.1.2 Integer Registers

There are 32 integer registers (R0 through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is specif
a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of an instru
that specifies R31 as a destination operand are discarded. Also, it is UNPREDICTA
whether the other destination operands (implicit and explicit) are changed by the instructi
is implementation dependent to what extent the instruction is actually executed once
been fetched. An exception is never signaled for a load that specifies R31 as a destination
ation. For all other operations, it is UNPREDICTABLE whether exceptions are signaled du
the execution of such an instruction. Note, however, that exceptions associated wit
instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Appendix A, certain load instructions to an R31 destination are
preferred method for performing a cacheblock prefetch.
Instruction Formats (I)3–1

t the
+

and

INE)
he PC

d. See

d it is
ged
on is

that
dis-
For all
ther
xcep-

the

the
ion

s, the
ibed in
There are some interesting cases involving R31 as a destination:

• STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and rese
lock_flag, this instruction causes the lock_flag and virtual location {Rbv
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag
locked_physical_address to become UNPREDICTABLE.

Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_COROUT
instructions, when R31 is specified as the Ra operand, execute normally and update t
with the target virtual address. Of course, no PC value can be saved in R31.

3.1.3 Floating-Point Registers

There are 32 floating-point registers (F0 through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is supplie
Section 4.7.3 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded an
UNPREDICTABLE whether the other destination operands (implicit and explicit) are chan
by the instruction. In this case, it is implementation-dependent to what extent the instructi
actually executed once it has been fetched.

A memory management exception or alignment exception is never signaled for a load
specifies F31 as a destination register. It is UNPREDICTABLE whether a floating-point
abled exception can be signaled by a load that specifies F31 as a destination register.
other instructions that specify F31 as an output operand, it is UNPREDICTABLE whe
exceptions are signaled during the execution of such an instruction. Note, however, that e
tions associated with the instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Appendix A, certain load instructions to an F31 destination are
preferred method for signalling a cache block prefetch.

A floating-point instruction that operates on single-precision data reads all bits <63:0> of
source floating-point register. A floating-point instruction that produces a single-precis
result writes all bits <63:0> of the destination floating-point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C instruction
lock_flag and the locked_physical_address register. The use of these registers is descr
Section 4.2.
3–2 Common Architecture (I)

e an
, are

ing

teger
cycle
FFFF
rval

ch

mple
cycle

gister

essor

lity

will
regis-
nd are

d in

f con-
3.1.5 Processor Cycle Counter (PCC) Register

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) ar
unsigned wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF
operating system dependent in their implementation.

PCC_CNT is the base clock register for measuring time intervals and is suitable for tim
intervals on the order of nanoseconds.

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific in
in the range 1..16. The cycle counter frequency is the number of times the processor
counter gets incremented per second. The integer count wraps to 0 from a count of
FFFF16. The counter wraps no more frequently than 1.5 times the implementation’s inte

clock interrupt period (which is two thirds of the interval clock interrupt frequency), whi
guarantees that an interrupt occurs before PCC _CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in a si
implementation. However, if PCC_OFF is used to calculate a per-process or per-thread
count, it must contain a value that, when added to PCC_CNT, returns the total PCC re
count for that process or thread, modulo 2**32.

Implementation Note:

OpenVMS, Tru64 UNIX, and Alpha Linux supply a per-thread value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each proc
on a multiprocessor system has its own private, independent PCC.

The PCC is read by the RPCC instruction. See Section 4.11.9.

3.1.6 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX compatibi
processor registers.

3.1.6.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an implementation
include two sets of state prefetch registers used by those instructions. The use of these
ters is described in Section 4.11. These registers are not directly accessible by software a
listed for completeness.

3.1.6.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as describe
Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence o
trol and assignment statements in an ALGOL-like syntax.
Instruction Formats (I)3–3

other

tation

ero-
3.2.1 Operand Notation

Tables 3–1, 3–2, and 3–3 list the notation for the operands, the operand values, and the
expression operands.

3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier no
used in theVAX Architecture Standard. Instruction operands are described as follows:

<name>.<access type><data type>

Table 3–1 Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction

Rb An integer register operand in the Rb field of the instruction

#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Ra field of the instruction

Fb A floating-point register operand in the Rb field of theinstruction

Fc A floating-point register operand in the Rc field of the instruction

Table 3–2 Operand Value Notation

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a z
extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating-point Fa operand. This is the contents of register Fa.

Fbv The value of the floating-point Fb operand. This is the contents of register Fb.

Table 3–3 Expression Operand Notation

Notation Meaning

IPR_x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X
3–4 Common Architecture (I)

er or

data
d to

nts);
.

3.2.2.1 Operand Name Notation

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand (integ
floating). It can be one of the following:

3.2.2.2 Operand Access Type Notation

A letter that denotes the operand access type:

Table 3–4 Operand Name Notation

Name Meaning

disp The displacement field of the instruction

fnc The PALcode function field of the instruction

Ra An integer register operand in the Ra field of the instruction

Rb An integer register operand in the Rb field of the instruction

#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Ra field of the instruction

Fb A floating-point register operand in the Rb field of theinstruction

Fc A floating-point register operand in the Rc field of the instruction

Table 3–5 Operand Access Type Notation

Access Type Meaning

a The operand is used in an address calculation to form an effective address. The
type code that follows indicates the units of addressability (or scale factor) applie
this operand when the instruction is decoded.

For example:

".al" means scale by 4 (longwords) to get byte units (used in branch displaceme
".ab" means the operand is already in byte units (used in load/store instructions)

i The operand is an immediate literal in the instruction.

r The operand is read only.

m The operand is both read and written.

w The operand is write only.
Instruction Formats (I)3–5

ess
ble,
3.2.2.3 Operand Data Type Notation

A letter that denotes the data type of the operand:

3.2.3 Operators

Table 3–7 describes the operators:

Table 3–6 Operand Data Type Notation

Data Type Meaning

b Byte

f F_floating

g G_floating

l Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

x The data type is specified by the instruction

Table 3–7 Operators

Operator Meaning

! Comment delimiter.

+ Addition.

- Subtraction.

* Signed multiplication.

*U Unsigned multiplication.

** Exponentiation (left argument raised to right argument).

/ Division.

← Replacement.

|| Bit concatenation.

{} Indicates explicit operator precedence.

(x) Contents of memory location whose address is x.

x <m:n> Contents of bit field of x defined by bits n through m.

x <m> M’th bit of x.

ACCESS(x,y) Accessibility of the location whose address is x using the acc
mode y. Returns a Boolean value TRUE if the address is accessi
else FALSE.
3–6 Common Architecture (I)

n
it

to
is
y

lt

alue

if

ND-
ay
ation

o-
s

n
ns,

ssor
sor

te-
AND Logical product.

ARITH_RIGHT_SHIFT(x,y) Arithmetic right shift of first operand by the second operand. Y is a
unsigned shift value. Bit 63, the sign bit, is copied into vacated b
positions and shifted out bits are discarded.

BYTE_ZAP(x,y) X is a quadword, y is an 8-bit vector in which each bit corresponds
a byte of the result. The y bit to x byte correspondence
y <n> ↔ x <8n+7:8n>. This correspondence also exists between
and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n> of x is
copied to byte <n> of result, and if y <n> is 1 then byte <n> of resu
is forced to all zeros.

CASE The CASE construct selects one of several actions based on the v
of its argument. The form of a case is:

CASE argument OF
argvalue1: action_1
argvalue2: action_2

...
argvaluen:action_n
[otherwise: default_action]

ENDCASE

If the value of argument is argvalue1 then action_1 is executed;
argument = argvalue2, then action_2 is executed, and so forth.

Once a single action is executed, the code stream breaks to the E
CASE (there is an implicit break as in Pascal). Each action m
nonetheless be a sequence of pseudocode operations, one oper
per line.

Optionally, the last argvalue may be the atom ‘otherwise’. The ass
ciated default action will be taken if none of the other argvalue
match the argument.

DIV Integer division (truncates).

LEFT_SHIFT(x,y) Logical left shift of first operand by the second operand.Y is a
unsigned shift value. Zeros are moved into the vacated bit positio
and shifted out bits are discarded.

LOAD_LOCKED The processor records the target physical address in a per-proce
locked_physical_address register and sets the per-proces
lock_flag.

lg Log to the base 2.

MAP_x F_float or S_float memory-to-register exponent mapping function.

MAXS(x,y) Returns the larger of x and y, with x and y interpreted as signed in
gers.

Table 3–7 Operators (Continued)

Operator Meaning
Instruction Formats (I)3–7

ed

ed

ed

its

n
nd

the
MAXU(x,y) Returns the larger of x and y, with x and y interpreted as unsign
integers.

MINS(x,y) Returns the smaller of x and y, with x and y interpreted as sign
integers.

MINU(x,y) Returns the smaller of x and y, with x and y interpreted as unsign
integers.

x MOD y x modulo y.

NOT Logical (ones) complement.

OR Logical sum.

PHYSICAL_ADDRESS Translation of a virtual address.

PRIORITY_ENCODE Returns the bit position of most significant set bit, interpreting
argument as a positive integer (=int(lg(x))). For example:

priority_encode(255) = 7

Relational Operators:

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand. Y is a
unsigned shift value. Zeros are moved into vacated bit positions, a
shifted out bits are discarded.

SEXT(x) X is sign-extended to the required size.

STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear
lock_flag.

Table 3–7 Operators (Continued)

Operator Meaning

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned

NE Not equal signed and unsigned

GE Greater or equal signed

GEU Greater or equal unsigned

GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit signed
3–8 Common Architecture (I)

er-
add,
s a
rison

he

se the

rue.
on
re
3.2.4 Notation Conventions

The following conventions are used:

• Only operands that appear on the left side of a replacement operator are modified.

• No operator precedence is assumed other than that replacement (←) has the lowest pre-
cedence. Explicit precedence is indicated by the use of "{}".

• All arithmetic, logical, and relational operators are defined in the context of their op
ands. For example, "+" applied to G_floating operands means a G_floating
whereas "+" applied to quadword operands is an integer add. Similarly, "LT" i
G_floating comparison when applied to G_floating operands and an integer compa
when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26> of t
instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value of 31.

Software Note:

There are several instructions, each formatted as a memory instruction, that do not u
Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch, Fetch_M, Read
Process Cycle Counter, Read and Clear, Read and Set, and Trap Barrier.

TEST(x,cond) The contents of register x are tested for branch condition (cond) t
TEST returns a Boolean value TRUE if x bears the specified relati
to 0, else FALSE is returned. Integer and floating test conditions a
drawn from the preceding list of relational operators.

XOR Logical difference.

ZEXT(x) X is zero-extended to the required size.

Table 3–7 Operators (Continued)

Operator Meaning
Instruction Formats (I)3–9

effec-

, Ra

gister

on the
mat

the
truc-

-bit
D

e Sec-

ent
3.3.1 Memory Instruction Format

The Memory format is used to transfer data between registers and memory, to load an
tive address, and for subroutine jumps. It has the format shown in Figure 3–1.

Figure 3–1: Memory Instruction Format

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address fields
and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents of re
Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value, depending
specific instruction. The virtual address (va) is computed as follows for all memory for
instructions except the load address high (LDAH):

va ← {Rbv + SEXT(Memory_disp)}

For LDAH the virtual address (va) is computed as follows:

va ← {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement field in
memory instruction format with a function code that designates a set of miscellaneous ins
tions. The format is shown in Figure 3–2.

Figure 3–2: Memory Instruction with Function Code Format

The memory instruction with function code format contains a 6-bit opcode field and a 16
function field. Unused function codes produce UNPREDICTABLE but not UNDEFINE
results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction. Se
tion 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the displacem
field is used to provide branch-prediction hints as described in Section 4.3.

031 26 25 21 20 16 15

Opcode Ra Rb Memory_disp

031 26 25 21 20 16 15

Opcode Ra Rb Function
3–10 Common Architecture (I)

tine

Ra),

s (to
o form
ress

ister
d two
rmat in

eld.
cture

3, 04,
func-
rity
3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative subrou
jumps. It has the format shown in Figure 3–3.

Figure 3–3: Branch Instruction Format

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address field (
and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bit
address a longword boundary), sign-extended to 64 bits, and added to the updated PC t
the target virtual address. Overflow is ignored in this calculation. The target virtual add
(va) is computed as follows:

va ← PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer reg
operations. The Operate format allows the specification of one destination operand an
source operands. One of the source operands can be a literal constant. The Operate fo
Figure 3–4 shows the two cases when bit <12> of the instruction is 0 and 1.

Figure 3–4: Operate Instruction Format

An Operate format instruction contains a 6-bit opcode field and a 7-bit function code fi
Unused function codes for opcodes defined as reserved in the Version 5 Alpha archite
specification (May 1992) produce an illegal instruction trap. Those opcodes are 01, 02, 0
05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, 1B, 1C, 1D, 1E, and 1F. For other opcodes, unused
tion codes produce UNPREDICTABLE but not UNDEFINED results; they are not secu
holes.

There are three operand fields, Ra, Rb, and Rc.

031 26 25 21 20

Opcode Ra Branch_disp

031 26 25

0

13 12 1121 20 16 15 5 4

Opcode Ra Rb SBZ Function Rc

031 26 25

1

13 12 1121 20 5 4

Opcode Ra LIT Function Rc
Instruction Formats (I)3–11

ed as

teger

bits
255

s:

ister
fica-
mat is

nc-
lpha

s are
ction

s.

ger or
The Ra field specifies a source operand. Symbolically, the integer Rav operand is form
follows:

IF inst<25:21> EQ 31 THEN
Rav ← 0

ELSE
Rav ← Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an in
register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed by
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and
and is zero-extended to 64 bits. Symbolically, the integer Rbv operand is formed as follow

IF inst <12> EQ 1 THEN
Rbv ← ZEXT(inst<20:13>)

ELSE
IF inst <20:16> EQ 31 THEN

Rbv ← 0
ELSE

Rbv ← Rb
END

END

The Rc field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating-point reg
to floating-point register operations. The Floating-point Operate format allows the speci
tion of one destination operand and two source operands. The Floating-point Operate for
shown in Figure 3–5.

Figure 3–5: Floating-Point Operate Instruction Format

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-bit fu
tion field. Unused function codes for those opcodes defined as reserved in the Version 5 A
architecture specification (May 1992) produce an illegal instruction trap. Those opcode
01, 02, 03, 04, 05, 06, 07, 14, 19, 1C, 1B, 1D, 1E, and 1F. For other opcodes, unused fun
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security hole

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either an inte
floating-point operand as defined by the instruction.

031 26 25 21 20 16 15 5 4

Opcode Fa Fb Function Fc
3–12 Common Architecture (I)

s:

s:

per-
the Fa

e are

ssor

per-
idual
The Fa field specifies a source operand. Symbolically, the Fav operand is formed as follow

IF inst<25:21> EQ 31 THEN
Fav ← 0

ELSE
Fav ← Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as follow

IF inst<20:16> EQ 31 THEN
Fbv ← 0

ELSE
Fbv ← Fb

END

Note:

Neither Fa nor Fb can be a literal in Floating-point Operate instructions.

The Fc field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate format and
form register-to-register conversion operations. The Fb operand specifies the source;
field must be F31.

3.3.4.2 Floating-Point/Integer Register Moves

Instructions that move data between a floating-point register file and an integer register fil
a subset of the Floating-point Operate format. The unused source field must be 31.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended proce
functions. It has the format shown in Figure 3–6.

Figure 3–6: PALcode Instruction Format

The 26-bit PALcode function field specifies the operation. The source and destination o
ands for PALcode instructions are supplied in fixed registers that are specified in the indiv
instruction descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.

031 26 25

Opcode PALcode Function
Instruction Formats (I)3–13

