

Lecture 6: Logical Effort

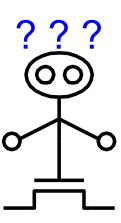
Outline

- □ Logical Effort
- □ Delay in a Logic Gate
- Multistage Logic Networks
- □ Choosing the Best Number of Stages
- Example
- Summary

Introduction

- ☐ Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

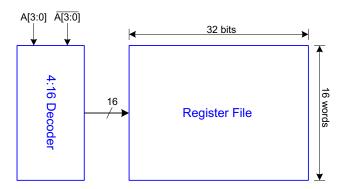
- Uses a simple model of delay
- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries



Example

Help Ben Bitdiddle design the decoder for a register file.

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?



Delay in a Logic Gate

- ☐ Express delays in process-independent unit
- \Box Delay has two components: d = f + p
- \Box f: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- □ g: logical effort
 - Measures relative ability of gate to deliver current
 - -g=1 for inverter
- - Ratio of output to input capacitance
 - Sometimes called fanout
- □ p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

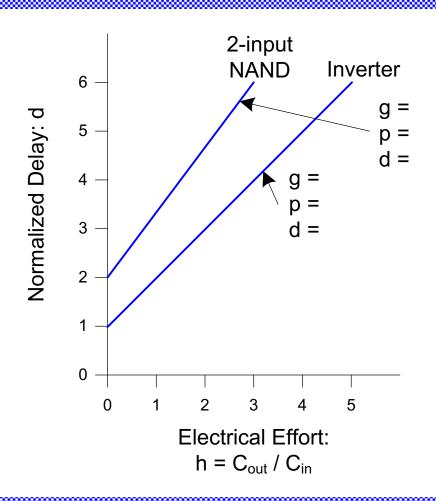
3RC

3 ps in 65 nm process

60 ps in 0.6 μm process

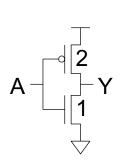
Delay Plots

$$d = f + p$$
$$= gh + p$$



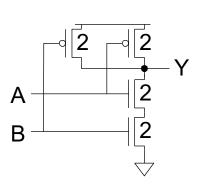
Computing Logical Effort

- □ DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

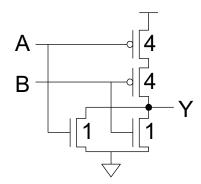


$$C_{in} = 3$$

g = 3/3



$$C_{in} = 4$$
 $q = 4/3$



$$C_{in} = 5$$

 $g = 5/3$

Catalog of Gates

□ Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

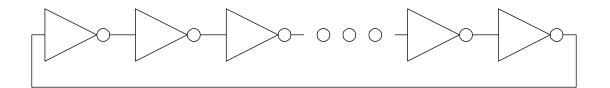
Catalog of Gates

- □ Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator



Logical Effort: g =

Electrical Effort: h =

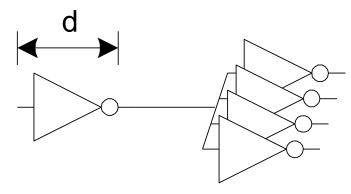
Parasitic Delay: p =

Stage Delay: d =

Frequency: $f_{osc} =$

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter



Logical Effort: g =

Electrical Effort: h =

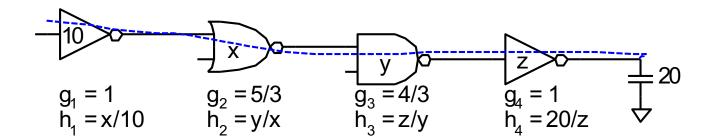
Parasitic Delay: p =

Stage Delay: d =

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- □ Path Logical Effort $G = \prod g_i$
- □ Path Electrical Effort $H = \frac{C_{\text{out-path}}}{C_{\text{out-path}}}$
- □ Path Effort

$$F = \prod f_i = \prod g_i h_i$$



Multistage Logic Networks

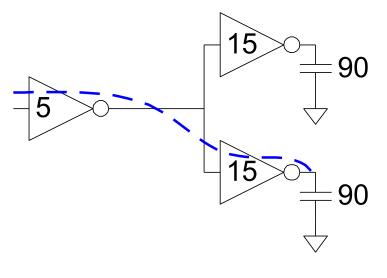
- Logical effort generalizes to multistage networks
- \square Path Logical Effort $G = \prod g_i$
- □ Path Electrical Effort $H = \frac{C_{out-path}}{C_{out-path}}$
- ☐ Can we write F = GH?

Paths that Branch

■ No! Consider paths that branch:

$$H =$$

$$h_2 =$$



Branching Effort

- ☐ Introduce *branching effort*
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

■ Now we compute the path effort

$$-F = GBH$$

Multistage Delays

□ Path Effort Delay

$$D_F = \sum f_i$$

□ Path Parasitic Delay

$$P = \sum p_i$$

□ Path Delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

☐ Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

☐ Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- ☐ This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Gate Sizes

☐ How wide should the gates be for least delay?

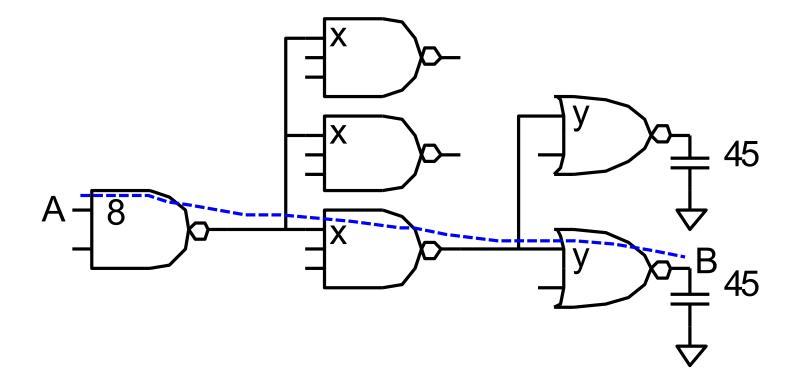
$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

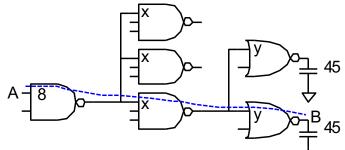
- □ Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- ☐ Check work by verifying input cap spec is met.

Example: 3-stage path

☐ Select gate sizes x and y for least delay from A to B



Example: 3-stage path



Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

Delay

$$^{\diamond}$$
 G = $(4/3)^*(5/3)^*(5/3) = 100/27$

$$H = 45/8$$

$$B = 3 * 2 = 6$$

$$\hat{f} = \sqrt[3]{F} = 5$$

$$P = 2 + 3 + 2 = 7$$

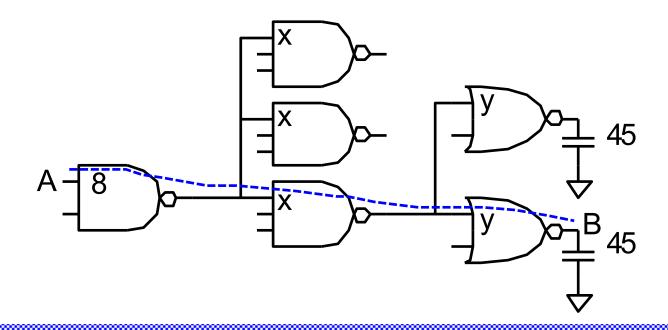
$$D = 3*5 + 7 = 22 = 4.4 FO4$$

Example: 3-stage path

■ Work backward for sizes

$$y = 45 * (5/3) / 5 = 15$$

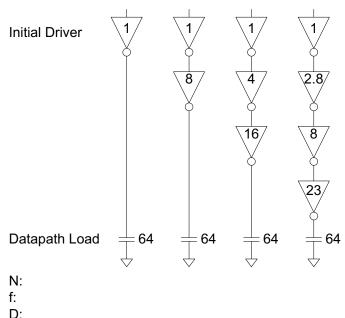
 $x = (15*2) * (5/3) / 5 = 10$



Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$



Derivation

Consider adding inverters to end of path

- How many give least delay? $D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$ Logic Block: n₁ Stages Path Effort F

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

 $oldsymbol{\Box}$ Define best stage effort $ho = F^{rac{1}{N}}$

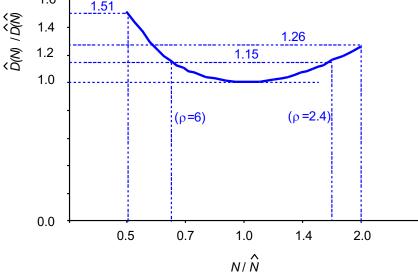
$$p_{inv} + \rho (1 - \ln \rho) = 0$$

Best Stage Effort

- $p_{inv} + \rho (1 \ln \rho) = 0 \text{ has no closed-form solution }$
- \square Neglecting parasitics (p_{inv} = 0), we find ρ = 2.718 (e)
- \Box For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

How sensitive is delay to using exactly the best number of stages?
1.6 1 151

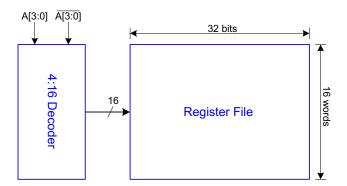


- \square 2.4 < ρ < 6 gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$

Example, Revisited

□ Help Ben Bitdiddle design the decoder for a register file.

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?



Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H =

Branching Effort: B =

 \Box If we neglect logical effort (assume G = 1)

Path Effort: F =

Number of Stages: N =

□ Try a -stage design

Gate Sizes & Delay

Logical Effort: G =

Path Effort: F =

Stage Effort: $\hat{f} =$

Path Delay: D =

Gate sizes: z = y = y

Comparison

- □ Compare many alternatives with a spreadsheet
- \Box D = N(76.8 G)^{1/N} + P

Design	N	G	Р	D
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

1) Compute path effort

F = GBH

2) Estimate best number of stages

 $N = \log_4 F$

- 3) Sketch path with N stages
- 4) Estimate least delay

 $D = NF^{\frac{1}{N}} + P$

5) Determine best stage effort

 $\hat{f} = F^{\frac{1}{N}}$

6) Find gate sizes

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

Limits of Logical Effort

- ☐ Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- □ Simplistic delay model
 - Neglects input rise time effects
- □ Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- ☐ Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master